Recently in Ant biology Category

Ant mating

Dear AntAsk Team,
Honey bee queens mate something like twenty times over a few days. That sperm then lasts for say 3 or 4 years. In the long lived queen ants how many times do the queens mate? And does that mating period last for their twenty odd year lifespan?

- Geoff

Figure 1. Copulating pair of Dorymyrmex bureni. The male is the small individual attached at the end of the large queen. Note that both individuals have wings. The queen of this species will probably only mate once.

Figure 2. Queen of Dorylus nigricans molestus. The highly specialized queens of Dorylus are wingless and must mate with multiple males before founding a colony, which they do by taking a proportion of the standing worker population with them.

Figure 3. Male Dorylus nigricans molestus. Males of Dorylus are massive and distinctive animals which probably only mate once in their life, unlike the queens, and which have bizarrely modified genitalia.

cardiocondyla obscurior males fighting_sylvia cremer photo.jpg
Figure 4. Male Cardiocondyla obscurior engaged in mortal combat to mate with their sisters inside the nest. Photo by Sylvia Cremer.

Dear Geoff,

This is a great question which has several facets to it. In general, queen ants mate only during a very short period of time, such as a few hours during a nuptial (mating) flight (Fig 1.) or for a few seconds to several hours by calling males to her with chemical pheromones or with other signals (Figs. 2, 3). Regardless of how the queen is able to obtain sperm, she is stuck with this for the duration of her life. To the best of our knowledge, queen ants never re-mate, even in lineages which have extraordinarily long life-spans. There are several intriguing aspects to the reproductive biology of ants, but one which relates to your question is the number of males a queen mates with. In that single short period of time in which a queen will mate, she may mate with one or up to a dozen males. Usually queens will mate with one or a few males, but in some cases queens seem to never mate more than once, such as in the Carpenter ants (Camponotus) which have been studied and in ponerine army ants (Simopelta). In other lineages queens will always mate with several males. These lineages usually have massive colonies with complex social organization. Examples are the leaf cutter ants in the genus Atta, and in the New and Old World army ants Eciton and Dorylus (Figs. 2, 3), respectively. Because matings occur only once in a queen's and male's lifetime males only produce enough sperm for that single event. A remarkable exception to this is the genus Cardiocondyla (Fig. 4), where some males fly from the nest to mate and die, and other, wingless males remain in the nest and copulate with their sisters after killing their brothers. These wingless and incestuous males are able to continuously produce sperm so that they may monopolize the virgin queens eclosing from their pupal cocoons. Despite the detail I've provided in this email, much remains to be learned about the reproductive biology of ants---from both the queen's and the male's perspective.

All the best,
-Brendon Boudinot & the AntAsk Team

Weaver Ant Farming

Dear AntAsk Team,

Weaver ant larvae is a commodity here in Indonesia, we use weaver ant larvae for dietary supplement to improve the performance of songbirds before bird singing competition and carp fishing bait. Throughout the year weaver ant larvae is harvested and sold, because demand for weaver ant larvae has increased in recent years some areas are being over harvested and as a result diminishing in weaver ant colony in the nature.
From that point, I and some friends trying to establish a weaver ant farm so we could meet the demand for weaver ant larvae and by doing so also help to reduce over harvesting in the nature.

Right now we have 42 jar of weaver ant nest in our colony which started from 30 jar of nest (the farming have started 1.5 month ago).
The diet of our farm is sugar water, caterpillar, crickets, diluted honey, diluted white egg, diluted fish oil.
Note: we haven't tried to harvest the larvae. Attached pictures of our farm setup.

DSC_0007.JPG DSC_0195.JPG

My question is:
1. Is it true that weaver ant tend to grow in population the most in shaded or dark places(because of these rumor we build a shed using paranet)?
2. What diet is the best for weaver ant to produce more egg?
3. After 1.5 month from the initial start now our weaver ant produce less and less egg what could go wrong?
4. How to join the antblog? I registered but there is no confirmation e-mail for activation.
Thank You in advance. I apologize if I'm not courteous enough or there is any mistaken words since English is not my native language.

Best Regards,


Hello Mario,

Thanks for your questions, and congratulations on your initiative: edible insects are the way to go!

We contacted an expert on many aspects of Oecophylla biology, Dr. Joachim Offenberg; and here is what he had to say:

"1. In nature they prefer sunny places for their leaf nests. However, as it looks like you keep the ants in plastic bottles it may be better under shady conditions as the bottles are transparent and temperature may build if exposed to direct sunshine. You can find a study on this issue via this link. On the other hand, the ants prefer temperatures usually above 30 degrees Celsius. Brood development increases with temperature.

2. The diet you describe seems to be adequate for the ants but it is important they have ad libitum access to a 20-30% sugar solution (they seem to prefer sucrose) and also remember to provide pure water ad libitum. In general they accept most types of protein but they prefer it in a wet condition. I.e. fresh rather than dried meat and fish etc. As insects are their natural source of protein it think it would be wise to include insects to some extend in their protein diet.

3. First of all you need to be sure that you do not mix nests from different colonies. In that case they will fight each other rather than producing offspring. Secondly you need to be sure that the maternal queen of the colony is included in your ant farm. The maternal queen (the queen without wings) is the only member of the colony that can produce eggs that are able to develop into brood. Weaver ant colonies will not accept introduced queens which makes it important to find the maternal queen of the colony (which can be difficult!). A last reason for limited brood production could be limited availability of space in the ant farm. I know from my laboratory colonies that colonies that live under limited space, reduce the production of new workers, since the colony is able to match the production of new workers to their actual need. I do not, yet, know the mechanism behind this regulation and have therefore not found a way to trick them to continue a high brood production. If you find a way I will be happy to hear about it!

4. Lastly, it is important to protect the ant farm against smaller ant spices as e.g. Pheidole spp., crazy ants etc. They like weaver ant larvae as much as the birds and are in many cases able to win a fight against weaver ants.

Good luck with your ant farm and best wishes,"

Joachim Offenberg, Flavia Esteves & the AntAsk Team

p.s. Mario, you began your AntBlog membership when you sent your questions to us! We really appreciated that, and hope to hear more interesting questions from you soon!
p.p.s. Your English is great!

Hello, I am in Toronto and have located a colony of small reddish/brown ants living under the 6x6 wooden ties surrounding my lawn. My question is: are these ants beneficial to the eco-system and should therefore be simply left alone? I have a wooden porch: should I be concerned about 'an invasion'?
Secondly, I have occasionally seen the same type of ants moving in mass across sidewalks - thousands of them - so many that it looks like a brown stain on the sidewalk. Can you tell me what causes this phenomenon?
Thanks for your help,


Dear Mary,

Thanks for writing to the AntBlog! It was a pleasure to answer to your interesting questions.

Ants play a huge role in an ecosystem: they are diverse (we estimate 30,000 ant species living on Earth), and are in great numbers everywhere (all the ants weigh almost the same as the 7 billion human beings). Along their evolution, ants established ecological relationships with a large array of plants and animals. They are prey, predators, symbionts, parasites (there are even slave maker ant species!), seed dispersers, pollinators, and so on. Ants move more soil than earthworms. They impact and are impacted by almost everything surrounding them. More, they have a short lifespan, and that means their nest population is constantly being replace by new generations of ants. So, if something happens with an environment you will notice the effects faster and with more details if you look at the ants, and it will be much more effective than looking at birds or mammals, for example.

Just for curiosity, ants are important for other aspects of human societies. Their behavior is used as model to create smarter traffic lights, or to develop software that will evaluate the response of our bodies to the effect of new drugs (see here, here, and here). Anti-inflammatories, antibiotics, and even drugs to fight against cancer were/are being developed with substances ants secrete (here, here, here, here, and here). Finally, have you ever thought of including ants in your menu? Many human cultures around the world did! See here.

Salad of Oecophylla smaragdina queen brood mixed with some worker ants, mint leaves, spring onion, chili, and fish sauce. Popular in Thailand and Laos. Image by Joost Van Itterbeeck/

Based on the behavior you described, I believe you found pavement ants (genus Tetramorium). Unlike carpenter ants (genus Camponotus), pavement ants don't cause any structural damage to your house (and just to take Camponotus out of the fire, those ants nest in decayed wood; so, if the wood in your house is in a good shape, carpenter ants will not be a problem).

Pavement ants get their name because they nest usually underneath or at the edge of sidewalks, and other hard surfaces. They are an introduced species from Europe; and in your garden they will: harvest seeds -- some of which will eventually grow around their nests; tend insects on plants, collecting sugary dropping they produce (A.K.A honeydew), and protecting them from predators; and predate other insects.

The pavement ant workers are dark reddish-black, about 2.5-4 mm long; the petiole, which connects the mesosoma (i.e., the modified thorax of ants) and gaster (modified abdomen), has two segments. The posterior part of the mesosoma has two spines that project upward, and they have a stinger in the last abdominal segment.

Lateral view of Tetramorium caespitum. Image by Will Ericson/

When two pavement ant colonies overlap, worker ants leave the nest to establish their territory boundaries before ants from the other nest push them out of there. Then, ants coming from each nest collide in a massive battle. The combats are sometimes ritualized: they will just size each other strength, and produce very few casualties. In another occasions, they will ripe one another apart, and thousands of corpses will be left on the sidewalk afterwards.

Sidewalk ant war. Image by the fabulous Alex Wild (


Flavia Esteves and the AntAsk Team

Ants in an ant hill

How many ants are in one ant hill?


Dear Samir,

Thanks for your question!

Ants are abundant: they collectively rival with humans as dominant organisms on terrestrial ecosystems, weighing as much as all humans present on Earth; and, combined with termites, they comprise almost a third of animal biomass in tropical terrestrial habitats! The reason for such success is their social nature. More, there are around 16,000 described ants species in the world, and we think there is approximately the same number of species yet to be discovered. As their large species number indicates, ant societies exhibit a diverse array of behavior, morphology, and also nest sizes.

While Myrmoteras barbouri has around 8 individuals in their colonies, some species of nomad ants that live in the old world, A.K.A driver ants, may have nests with several million individuals. Another good example of large nests is the ones built by Atta sexdens, a leaf cutter ant living in the Neotropic, which may possess 5 to 8 million ants!

myrmoteras.jpg Full face view of the charismatic Myrmoteras barbouri, whose nest possesses very few ants. This ant species lives in the Indomalaya bioregion. Image by Estella Ortega/

siafu7-L.jpg Dorylus driver ants in Kibale, Uganda. Image by Alex Wild (

Among the diversity of ants we find on Earth, there are the mound-builder ants. Their nests are more than a pile of revolved soil covering an underground home; they have symmetric shape, complex interconnected systems of galleries and chambers, and are often thatched with leaves and stems fragments, or adorned with pebbles. Those types of nest indicate habitats under extreme climate. The mound reduces the loss of temperature and humidity, while it also increases the area exposed to sunlight, keeping the nest warmer than the outside environment. Their thatched or pebble sprinkled roofs are an additional heat source (think of how warm is a stone under the sunlight, or the heat produced by material in decomposition), besides preventing evaporation.

FormicaObscuripesNest-S.jpg Thatched mound nest of Formica obscuripes, an ant found in North America. Image by Alex Wild (

The nests of some mound-building ants, such as Formica (also known as wood ants), often last for many decades, and they can be massive, rising from the soil surface as much as 5 feet (1.5 meters).

A thatched mound nest of Formica rufa, found in Palearctic region, may have 4 million ants; while in North America, nests of the western thatching ant Formica obscuripes, house around 40,000 ants. The soil mound nests of Solenopsis invicta possess approximately 100,000 individuals.

casent0178134_p_1_high.jpg Lateral view of Solenopsis invicta, a tramp species found in the United States. Image by April Nobile/

You will find interesting information on mound nests and thermoregulation here.

All the best,

Flavia Esteves & the AntAsk Team

Ants and Disease

Hello, this is a very strange situation but I have a 10 month old baby in my home and I am concerned.

A couple of weeks ago I went in to the backyard and noticed my dog was playing with something unfamiliar. As I walked towards it I realized that it was a bird. This bird must have been there for awhile because it was unable to move, and had defecated so much that ants were (I'm sorry for the graphic details) actually crawling inside of this poor bird and apparently eating the fecal matter. This poor guy was obviously in a significant amount of pain so we had to do something very sad to stop it from suffering any longer.

This just so happened to have occurred next to a wall in our home that is the exterior wall to our dining room where we eat and where my 10 month old's high chair is. Today, I was eating at our table and some of my paper work and pens were sitting on top of it. As I was picking up my plate I noticed the same species of tiny little ants crawling all over the table and my paper work. There was not even any food or anything on the table that could have lured them there. I instantly took my son upstairs, and began disinfecting the table, vacuuming and such.

I do not know anything about ants but my concern is that these ants might be carrying disease from the bird. Can you please tell me if I need to be worried about this? They are the tiniest little transparent orangish colored ants. We live on Oahu, in Hawaii. Thank you very much for your time.


Ok, Alix. I've got good news and bad news.

The bad news: Ants (just like any animal that moves from one place to another) can transmit infectious bacteria, including Salmonella and Staphylococcus. (I'm not trying to throw your dog under the bus by any means, but your dog is definitely more of a vector for bacteria coming in from outside than these ants.) As indicated in a quick literature search (click here ), it's been reported at least as far back as 1914 (Wheeler) that if an ant walks through an area densely populated with infectious bacteria, they track it along in quantities large enough to show up in a petri dish.

The good news: Petri dishes don't have immune systems. The quantities of bacteria ants transport and slough off as they saunter across your counter tops will probably be small compared to the infectious dose for healthy humans. The quantities of bacteria that remain on the ants' feet after taking the thousands of little ant-steps between a source of infection and your table would presumably knock off the vast majority of the bacteria, leaving too few to constitute an infectious dose.

So what I'm trying to say is: thought it is theoretically possible for ants to transmit infectious bacteria to humans, as far as I'm aware (other members of this blog, please speak up if you know better!) there are no records of ants being definitively implicated in someone catching a disease. As best as I can tell, all of the articles that reference ants' potential to be vectors for infectious bacteria are based upon laboratory studies in which nothing besides some agar in a petri dish got sick. Ants, as you know, are quite common, so it seems to me that if they were serious actual (as opposed to potential) disease vectors, we'd have heard about it.

A well-intentioned tangent: This is, of course, neither a child-rearing nor a health advice blog, but I think this recent article on the "Hygiene Hypothesis" makes a good case for not keeping too sterile a house:
Some arguments, both pro- and con- Hygiene Hypothesis haven't been rigorously scientifically tested, so take everything you read with a grain of salt...or a pinch of dirt.

Hope this helps!
Jesse Czekanski-Moir & the AntAsk Team

Ant social status

Hi, I was curious if ants have a social status within their sub sectors (worker, male). How do they obtain a higher status? And if so does this give them more privilages (ie a bigger living space, more food, first breeding rights).


Dear Hub,

Thanks for writing to the AntBlog! We contacted an expert on many aspects of ant biology (behavior, colony reproduction, nest architecture, population dynamics, among others), Dr. Walter Tschinkel; here is what he had to say:

"Hello Hubert,
You asked AntBlog whether ant have social status within their colonies, and whether such status might be connected to certain individual advantages and benefits.
The simplest answer is that social status in the sense that we know it within vertebrate societies does not exist in ants. It is helpful to think of ant colonies as analogs to organisms (hence, we often call them superorganisms). Every individual is engaged in helping the colony produce more colonies, just as every cell in an organism is engaged in helping produce more of that organism. In the ants, there is only one (or a few) individual(s) capable of direct reproduction (the queen), while in an organism, only the germ-line cells in the gonads are capable of making gametes and subsequently more organisms. In this light, you can see that different sectors of the colony may be allocated differing amounts of resources, but such allocation serves the needs of the colony as a whole, rather than any individual within it. The individual ants making up the colony are simply the machinery needed to make more colonies.
One of the basic mechanisms that organizes colony function is division of labor (or function). The most basic division of function or labor is reproductive -- most of the ants in a colony are more or less sterile workers, while only one (or a few) individual is capable of mating and laying eggs. Most of these eggs develop into more workers because workers are short-lived and are continuously replaced, whereas the queen has a long life span (in many cases, equal to the life span of the colony). The second principle that organizes the colony is that the workers change jobs as they age. Young workers mostly take care of larvae and pupae, and as they age they switch to more general nest maintenance, food processing, transport within the nest and so on. Only the oldest workers leave the nest to forage, bringing back food for the rest of the colony. Once they begin foraging, their life expectancy is very short (a few weeks).
This change of jobs parallels an upward or outward movement of the worker within the nest. Young workers are born in the deeper parts of the nest, move upward as they age and change jobs, and finally appear near the surface, whereupon they become defenders and foragers during the last part of their lives. There is thus a continuous upward and outward flow of workers. The image here shows a cast of the nest of the Florida harvester ant, Pogonomyrmex badius, and summarizes these movement and labor patterns within the nest.

Once you see the parallels between organisms and superorganisms, you see that division of function or labor is central to both, and that differences in allocation serve the entire entity. The relative size and activity of the liver, or kidneys or circulatory system of an organism serves the entire organism, and any deviation from some norm can be detrimental to the function and fitness of the organism. Similarly, the patterns of division of labor in ant colonies serves the success and fitness of the colony as a whole. The workers are just the gears in that machine."

We hope this answers your question,

Walter Tschinkel, Flavia Esteves & the AntAsk Team

My name is Joseph, a senior biologist at the University of Scranton. I am currently conducting research on morphometric of ants, but we are having some issues. I was curious if you had any papers on the histology of ants, specific on the nervous system or their notochord. Any species will do at the moment, we are just used to looking at mammalian tissue, and not insect samples. Hope to hear back from you soon!


Hello Joseph,

Thanks for writing! We contacted an expert on the nervous system of ants, Dr. Wulfila Gronenberg; here is what he had to say:

"Dear Joseph,

the nervous systems of insects has been well described for many taxa, and ants are no exception. The basic design is not unlike what you see in vertebrates - they have a brain with visual, olfactory, tactile and other centers including higher order central processing centers, and the have a ventral nerve cord analogous (and probably homologous) to the vertebrate spinal cord and which comprises the sensory and motor centers that control walking, flight (in winged males and females) and abdominal functions. If you want to learn more about ant nervous systems I suggest a review paper that I have written a few years ago:

Gronenberg W (2008) Structure and function of ant (Hymenoptera: Formicidae) brains: Strength in numbers. Myrmecological News 11:25-36.

If you (or anybody else) have difficulties getting hold of the paper, just send me an email:
If your question was more about histological and technical aspects (how to dissect, stain or measure ant brains), please let me know and I can point out some more specific information to you.

All the best"

Wulfila Gronenberg, Flavia Esteves & the AntAsk Team

p.s. Joseph, if you create an account on Myrmecological News (for free), you can download Gronenberg's paper.

Cohabiting ants

Hi there, loving your page!

I am on holiday in Andalucia, southern Spain, and right by our front door there is a colony of what look like harvester ants. No more than fifteen centimetres away there are some holes from which some very tiny red ants emerge, about a quarter of the size of the smallest harvester ants. Are these two separate colonies, or different types of the same ant? They don't look related and they don't appear to cross into each others territory. I would have thought they'd be fighting all the time if they're not related. Why might this be? Are their diets different enough that they aren't in competition? Sorry to bombard you with questions!

Kind regards,


Dear Ian,

Greetings from San Francisco, and thanks for writing! We contacted an expert on taxonomy and ecology of Europe and Macaronesia ant species, Dr. Xavier Espadaler; here is what he had to say:

"It is not an unusual situation for different ant species to have nest entrances rather close. Coexistence is a possibility; fighting is another possibility. But if the two societies are already nesting close to each other, it is likely that they differ in some way, in their daily activity cycles, or in their food habits.

It is possible that the harvesting ants (Messor) are living close to a Pheidole pallidula nest. This last species is all too common in AndalucĂ­a. Their nest, with one or a few entrances, is usually surrounded by the tiny remains of the scavenging they do upon any kind of arthropod remains or corpses; they may capture living prey as well, if small enough. The remains look like a dark zone, somewhat semicircular, bordering the nest entrance. If you are able to look at them under a magnifier, you would see shining heads, wing or leg or thorax fragments, that are the non edible parts of their foraging."

Hope this helps,

Xavier Espadaler, Flavia Esteves, & the AntAsk Team

We have a huge colony that has seems quite mature. Has been there for a long time. They are small black and red ants and they have a nasty little bite. Unfortunately we need to place a structure right over the ants colony. We do not want to harm the ants and would prefer to somehow move the colony.

It may a good time of year to do something with a deterrent, as they are very active. I thought we might be able to lift the whole colony, using some sort of bucket, during the night, so they are not away from the nest. I imagine this would cause havoc and might not succeed.

We live in Victoria, on Vancouver Island.
Any suggestions? Any input would be appreciated.



Good afternoon, Joan!

Interesting question! It sounds like you have a colony of the quite charsimatic Western thatch ant, Formica obscuripes, in your yard. Fortunately I have experience with this species, given that there is considerable variation in the construction of thatch nests among the species in North America. Unfortunately, it may not be possible to relocate the colony without destroying it. The above-ground thatch---while impressive in stature, especially in the Pacific Northwest---is not the primary housing-unit of the colony. The thatch is like a compost pile which is warmed internally by the decomposition of the organic material used to construct it. In this way the above-ground component of the nest functions like an incubator, where the ants will place their developing young during the late winter and early spring months, allowing the young ants to grow even when there is snow on the ground. Now, the problem is that the most important members of the colony---the queens---don't like to stay in the thatch part of the nest. The queens are usually encountered in underground chambers which may extend several feet beneath the thatch. Thus, in order to relocate the colony you would need exquisite timing so that way you may move the thatch with the queens in it. Perhaps the best time of day for this would be in the morning or late afternoon when it is cooler out as the queens may migrate up into the thatch (although this idea has not been tested).

If you were to attempt to move the thatch there would be no way to do it without upsetting the workers as they are very territorial and aggressive about their mounds, and there is no guarantee that even if a queen were in the nest that she would be able to successfully excavate a new nest once moved. However, if you wanted to go through with the move I would recommend bringing a few 5-gallon buckets, a shovel, gloves, and duct-tape. What you could do is tape the gloves over long sleeves and your socks over your pants (trust me on this one!), then take the shovel and transfer as much thatch and soil from beneath the mound as fast as possible into the buckets (which hopefully you have lids for). You could take these and dump them together in an area very similar to where the colony is now, presumably near some Douglas firs. You might not have to dig too far down into the ground, as I have found queens at the soil surface and just below---less than a foot. I'm pleased with how considerate you are about these colonies! They may live for over a decade and house several thousand busily working individuals, let alone the fact that this species is ecologically important in your region.

Good luck with the ants, and I hope I helped answer your question!
Brendon Boudinot & the Ant Ask Team

When comparing human infrastructure and ants what would you say is their most common behaviors? Do you think there is anything humans could learn from ant behavior?

Dear Jacqueline,

When human designers, architects, engineers, and computer scientists turn to other organisms for inspiration, it is often referred to as "biomimicry." In recent years, more and more people have turned to the other species on Earth for inspiration. Recent and ongoing work in Biomimicry is highlighted in this TED talk (by the main popularizer of the term "Biomimicry").

However, the speaker doesn't mention much about ants (and neither have I, so far...). One of the reasons ants are so interesting is that they display a wide variety of life-styles, from farming fungi, to raiding termite nests, to foraging in the shifting sands of the desert. And they're able to do all this with very little of what I would call "individual-level intelligence." Ants, like other social insects, function without central control, using what has been referred to as "swarm intelligence." (for more of my ramblings on swarm intelligence, see a previous post here, and also this more coherent article from National Geographic).

So, by studying ants and other social insects (like bees, termites, and certain wasps), we can learn more about true, blind democracies, and how to get things done without central control. For example, by studying processes different kinds of ants (and other social insects) use to find food and tell each other about it, computer scientists and engineers have been inspired to think of new ways to route traffic, solve resource distribution problems, and perhaps even program robots. The tricky thing about biomimicry right now is that many of these are still just potential lessons we could learn from ants - they haven't yet changed the way we get things done in our own lives.

The other tricky thing about biomimicry is that, like things you read in a blog post, sometimes what seem to be cogent lessons need to be evaluated and taken with a grain of salt. For example, in this article, the author uses the example of fungus-growing ants as a system of agriculture that we should learn from (perhaps just because of that charismatic image), but in the same paragraph alludes to the dangers of monoculture, which is exactly what fungus-growing ants (and termites) do: they cultivate a single species of fungus. They can get away with it, because they've evolved the ability to secrete antibiotics and fungicides from glands in their bodies, and they have the labor power to strip acres of vegetation around their nest and bring it back to fertilize their gardens (the most charismatic ants that farm fungi are the leaf cutter ants; other types of fungus-farming ants and termites use some combination of things like soil, partially decayed vegetable matter, the exoskeletons of dead insects, and caterpillar frass to fertilize their fungal gardens). Worse, there are different kinds of ants that make slaves of other ants, ants that are very lazy (surprise!), and ants that just hang from the ceiling all day collecting sugar water in their abdomens (which I would probably try for a while, but might lead to diabetes after a few weeks). So just like the Japanese scholars studying at the "Institute for the Study of Barbarian Books" in the 1800s did with knowledge from "The West," we should study nature (ants included), but pick and choose which lessons to incorporate into the society we wish to build for ourselves.

Hope this helps!
Jesse Czekanski-Moir & the AntAsk Team


In collaboration with

Got a question?

Have a question about ants? Drop us a line!

Recent Assets

  • siafu7-L.jpg
  • FormicaObscuripesNest-S.jpg
  • casent0178134_p_1_high.jpg
  • article-2022765-0D4E92FF00000578-678_634x466.jpg
  • DSC_0007.JPG
  • DSC_0195.JPG
  • dorymyrmexbureni_casent0103862_p_1_high.jpg
  • dorylusnigricansq_casent0172663_p_1_high.jpg
  • dorylusnigricansm_casent0172663_p_1_high.jpg
  • cardiocondyla obscurior males fighting_sylvia cremer photo.jpg